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A new sixth-order method of Runge-Kutta type is developed for the numerical integration 
of the single channel radial Schrijdinger equation. The formula derived contains certain free 
parameters which allows it to be fitted automatically to exponential functions. Extensive 
numerical testing on the resonance problem and on the bound states problem indicates that 
this new method is generally more efficient than other previously developed finite difference 
methods. 0 1990 Academic Press, Inc. 

INTRODUCTION 

In recent years there has been considerable interest in the numerical solution of 
the one-dimensional Schrodinger equation, 

y”(r) = C/(1+ 1)/r* + I’(r) - k*] y(r), (1.1) 

where one boundary condition is y(O) = 0 with the other boundary condition being 
specified at I = co. Equations of this type occur very frequently in theoretical 
physics, for example [l], and there is a real need to be able to solve them both 
efficiently and reliably by numerical methods. In (1.1) the function 1(1+ l)/r2 + V(r) 
is the effective potential, which tends to zero with increasing r, and k* is a real 
number denoting the energy. Boundary value methods based on either collocation 
or finite differences (so-called global methods) are not very popular for the solution 
of (1.1) due to the fact that the problem is posed on an infinite interval. Initial value 
approaches, such as shooting, need to take into account the fact that /u’(r)1 .is very 
large near r = 0. It is therefore inappropriate to use standard library packages for 
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the solution of (1.1) and, as a result, many alternative methods have been proposed 
in an attempt to solve (1.1) efficiently. One of the most popular of these formulae 
is Numerov’s method which is the optimal linear two step method [2], Although 
Numerov’s method is only of order four it has been found in practice to have a per- 
formance which is generally superior to higher order four step methods. It was 
postulated in [3] that one of the reasons for this is that Numerov’s method has a 
relatively large interval of periodicity whereas the intervals of periodicity of linear 
k-step methods tend to decrease as k increases. It therefore seems that the investiga- 
tion of linear multistep methods is not a fruitful way of deriving efhcient high order 
methods for (1.1). 

An alternative approach to deriving high order methods for (1.1) was given by 
Cash and Raptis [4]. In [4] a sixth-order Runge-Kutta type method with a large 
interval of periodicity was derived. The theoretical results derived in that paper 
suggested that this new method would be superior to Numerov’s method on a wide 
class of problems of the form (1.1) and this expectation was borne out in practice 
by numerical testing. A novel aspect of the approach described in [4] was the idea 
of using a variable step algorithm based on an embedded error estimate. This error 
estimate was obtained very efficiently by taking the difference of the solutions 
obtained using Numerov’s method and the sixth-order Runge-Kutta-like method 
and the numerical results showed there is a big advantage to be gained by using 
variable step, rather than fixed step, formulae for ‘the integration of (1.1). 

An alternative approach for developing efficient methods for the solution of (1.1) 
is to use exponential fitting. This approach is particularly appropriate because for 
large r the solution of (1.1) is periodic. An early investigation of exponential fitting 
was by Raptis and Allison [S] who derived exponentially fitted formulae based on 
Numerov’s method. Numerical results presented in [S] indicate that these fitted 
methods are considerably more efficient than Numerov’s method for the solution of 
(1.1). Since the work of Raptis and Allison, the idea of exponential fitting has been 
investigated and extended by many authors. Perhaps the most significant work in 
this general area was that of Ixaru and Rizea [6]. In particular they showed that 
for the resonance problem defined by (1.1) it is generally more efficient to derive 
methods which exactly integrate functions of the form: 

{ 1, r, r2, . . . . I-‘, exp( + or), r exp( for), r2 exp( f wr), . . . . rm exp( f or)} (1.2) 

than to use classical exponential fitting methods. A powerful low order method of 
this type was developed by Raptis [7]. However, efficient higher order formulae are 
much harder to derive. The difficulty is that as the integers m and s increase, more 
and more free parameters are required in the integration formula to allow the fitting 
to be carried out. This in turn means that if a linear k-step formula is used the value 
of k will increase with m and s and, as pointed out earlier, linear k-step methods 
with k> 2 have largely proved to be inefficient for the solution of (1.1). An addi- 
tional problem with linear k-step methods with k > 2 is that step changing tends to 
be complicated and there are extra difficulties with starting due to the need to 
derive additional initial conditions. 
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An approach which overcomes all of these problems is to combine the ideas of 
[4,6,7] and to use exponential fitting with Runge-Kutta-like methods. Such 
formulae allow several free parameters for fitting without requiring that the step 
numbers be increased above 2. The purpose of this paper is to investigate the 
possibility of deriving Runge-Kutta methods fitted to (1.2) and in particular to 
derive and test a method with m = 1 and s = 3. Following the work of Ixaru and 
Rizea [6] we would expect this new method to be superior to methods based on 
classical exponential fitting for a large class of problems of the form (1.1). Numeri- 
cal results presented in Section 3 show that this expectation is borne out in practice 
with the new formula being considerably more accurate than previously developed 
finite difference formulae. 

2. DERIVATION OF THE METHODS 

The one-dimensional radial Schrodinger equation can be written in the form: 

y”(r) =f(r) y(r), r E co, 03 ), (2.1) 

where f(r) = W(r) - E, W(r) = 1(Z + 1)/r* + V(r) is an effective potential with 
W(r) + 0 as r + co and E is a real number denoting the energy. The Schrijdinger 
equation is normally posed in boundary value form with one boundary condition 
being y(0) = 0 and the other boundary condition being specified at large r. Since 
both V(r) and 1(1+ l)/r2 tend to zero for large values of r it follows that the 
function f can be approximated by a constant for r > rr say and so the solution is 
nearly periodic for r > rr. It is this periodicity of the solution that exponential fitting 
attempts to exploit. 

The numerical integration method which we will derive in this paper is of the 
form 

Y n+,+~Yn+Yn-1=h2CPo(Y::+1+Y~-1)+Bl(Y::+1,2+Y~-1,2)+YY~l, (2.2) 

where, for example, yi + 1 E j( rn + 1 ) y, + 1 with r, + 1 = r,, + h. 
We require that the method (2.2) should be exact for any linear.combination of 

the functions: 

(1, r, r2, r3, exp( for), r exp( &or)} (2.3) 

(that is, of the form (1.2) with s = 3, m = 1). Generally speaking it is the fact that 
the formula exactly integrates all polynomials of degree ~3 which is important for 
r < rC whereas it is the fact that it integrates exactly ri exp( for), i = 0, 1, that is 
important for r > rc. Perhaps the simplest way of deriving a formula which 
integrates the functions (2.3) exactly is to derive one which integrates 

(2.4) 
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exactly and then put o0 ~0, o, = o2 = u [133. Putting a = -2 so that the 
functions 1 and r are integrated exactly and demanding that (2.2) integrates (2.4) 
exactly, we obtain the system of equations for /IO, /Ii, and y : 

25% cosh(wj) + 248, cosh(wJ2) + w;y = 2(cosh(wi) - l), j=o, 1,2, (2.5) 

where wj = mjh. 
Solving for B,,, /?i, and /I2 and then setting o0 = 0, oi = w2 = o, we obtain 

PO = (-8w(2 - 2 cash(w) + cosh(3w/2) - cosh(w/2)) - 2w2(4 sinh(w) - sinh(3w/2) 

-5 sinh( w/2)) + 2w4 sinh( w/2))/D 

fl,=(8w(3-4cosh(w)+cosh(2w))-4w4sinh(w))/D (2.6) 

y = (- 16w( 1 - 2 cash(w) + cosh(2w) - cosh(3w/2) + cosh(w/2)) + 4w2(4 sinh(w) 

-sinh(3w/2) - 5 sinh(w/2)) + 2w4(sinh(3w/2) + 3 sinh(w)))/D, 

where 

D = - 2w4(4 sinh(w) - sinh(3w/2) - 5 sinh(w/2)) 

with w=oh. 
In order to use formula (2.2) in practice we need to find computable approxima- 

tions to the terms y,, i,*, yn- ,,2, where we still require the method (2.2) to be exact 
for any linear combination of the functions (2.3). Following the approach of [4] we 
look for approximations of the form 

where the constants A,, AZ, A3, A4, B,, B2, B3, B, are to be determined. In order 
for these approximations to be exact for (2.3) it can be shown that we need 

A, = (-8w(2 - 2 cash(w) + cosh(3w/2) - cosh(w/2)) + 2w2R + w4 sinh(w))/X 

A, = (- 16w(l- 2 cash(w) + cosh(2w) - cosh(3w/2) + cosh(w/2)) 

-4w*R + 6w4 sinh( w))/X 

A, = (2w(3 + cash(w) - 4 cosh(w/2)) - w2(sinh(w) - 2 sinh(wl-2)) - 2R)/X 

A4 = (-2w(l+ 6 cash(w) + cosh(2w) - 4 cosh(3w/2) - 4 cosh(w/2)) - 2w2(3 sinh(w) 

-sinh(3w/2) - 3 sinh( w/2)) + 4R)/X 
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with 

R = 4 sinh(w) - sinh(3w/2) - 5 sinh(w/2) 

X= -8w(3-4cosh(w)+cosh(2w))+4w4sinh(w) 

B, = (- 16w( 1 - cosh(2w) + 2 cosh(3w/2) - 2 cosh(w/2)) + 8w*T- w4S)/Y 

B, = ( - 16w( 1 -cash(w) - cosh(2w) + cosh(3w) - 2 cosh(3w/2) + 2 cosh(w/2)) 

-8w2T+9w4S)/Y (2.7) 

B, = (2w(9 + 8 cash(w) - cosh(2w) - 16 cosh(w/2)) + w2(2 sinh(w) + sinh(2w) 

-8 sinh(w/2)) - 8T)/Y 

B, = (2w(l- 9 cash(w) - 9 cosh(2w) + cosh(3w) + 16 cosh(3w/2)) - 3w2(6 sinh(w) 

+3 sinh(2w)- 8 sinh(3w/2)) + 8T)/Y 

and 

S = 2 sinh(w) + sinh(2w) 

T= 2 sinh(w) + sinh(2w) - 3 sinh(3w/2) + sinh(w/2) 

Y = - 32w(2 -cash(w) - 2 cosh(2w) + cosh(3w)) + 16w4S. 

This specifies completely our integration formula (2.2). However, the above 
formulae are subject to heavy cancellations for small values of w = oh. In this case 
it is much more convenient to use the series expansions for the coefficients of the 
formula. These are laborious to derive and in what follows we merely list our 
results. 

A1=3/32-43w2/32256+151w4/32514048+24539w6/450644705280-686657w8/ 

1073681494179840 

A2=29/16+43w2/16128-151w4/16257024-24539w6/225322352640t686657w8/ 

536840747089920 

A3=-1/384+43w2/387072-6173w4/1950842880+442543w6/5407736463360- 

296084471w8/14172595723~738880 

A4=31/192-215w2/193536+164~w4/975421440-589777w6/2703868231680t 

341403833w8/70862978615869440 
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81=37/128-699w2/14336+!1823w4/4816896-5574a531w6/66762178560t 

177383276499w8/1749703175700480 

82=27/128+699w2/14336-31823w4/4816896+55748531w6/66762178560 

i77383276499w8/1749703175700480 

B3=-9/512+233w2/57344-188473w4/289013760t72603677w6/801~46142720 

245121791839w8/20996438108405760 

84=-171/512+2563w2/57344-1720907w4/289013760t10843249w6/14566293504- 

lBB3477525549w8/20996438108405760 (2.8) 

where w2 = w2, w4 = w4, w6 = w6, w8 = w’. 
Having derived our numerical method we wish to demonstrate its efficiency on 

some problems of practical interest. This we do in the next section. 

3. NUMERICAL RESULTS 

In this section we present some numerical results to illustrate the performance of 
our method. We consider the numerical integration of the Schriidinger equation: 

y”(r) = (V(r) - E) v(r) (3.1) 

in the well-known case where the potential V(r) is the Woods-Saxon potential 

W(r) = V(r) = uo/( 1 + t) - u()t/[a( 1 + t)2] (3.2) 

with t = exp((r- &)/a), u,, = -50, a =0.6, and RO= 7.0. In order to solve this 
problem numerically we need to approximate the true (infinite) range of integration 
[0, 00) by a finite range. For the purpose of our numerical computation we take the 
domain of integration as 0 6 r < 15. We consider Eq. (3.1) in a rather large domain 
of energies, i.e., Emin = -50, E,,, = 1010. The problems we consider are (a) the so- 
called bound states problem and (b) the so-called resonance problem. 

We first consider: 

(a) The Bound States Problem 

For negative energies we solve the so-called bound states problem, i.e., with the 
boundary conditions y(O) = 0 and y(r) z exp( -fir) for large values of r. In 
order to solve this problem numerically we use a strategy which has been proposed 
by Cooley [8] and subsequently has been improved by Blatt [9]. Basically this 
involves integrating forward from the point r = 0, backward from the point rb = 15 
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and matching up the solution at some internal point in the range of integration. As 
initial conditions for the backward integration we take [6] 

.drb)='=p(-firb) and y(Tb-h)=exp[-J-E(rb-h)], 

where h is the steplength of integration of the numerical method. 
In order to use method (2.2) we need to compute one extra “initial” condition at 

rb - 2h for the backwards integration and this is obtained using the method 
developed in Raptis and Allison [S]. Similarly, in the forward direction we take 
y(0) = 0, y(h) = h, and we compute a numerical solution at 2h using the method of 
co 

TABLE I 

Absolute Errors, in 10m9 Units, of the Negative Eigenvalues 
Calculated by the Seven Algorithms I, II, III, IV, V, VI, VII 

Method: I II III IV V VI VII 

h 

The eigenvnlue Absolute error in 10mg units 

(Real time of Computation in CPU's) 

-49.457788728 l/a 236 49 5 0 15 0 0 

(0.02) (0.02) (0.02) (0.03) (0.07) (0.05) (0.05) 

l/16 13 2 0 0 1 0 0 

(0.042) (0.045)(0.045)(0.062) (0.138)(0.110) (0.111) 

l/32 1 0 0 0 0 0 0 

(o.oao) (o.oaa)(o.oaa)(o.l30) (0.278)(0.221) (0.230) 

-41.232607172 l/8 494883 579 173 53 5874 15 0 

(0.023) (0.021) (0.02) (0.025)(0.065)(0.047) (0.052) 

l/16 30798 61 12 7 330 0 0 

(0.042) (0.045) (0.045)(0.063) (0.130)(0.110)(0.10a) 

l/32 1918 5 3 0 22 0 0 

(o.oaa) (o.oaa)(o.oaa)(o.l30) (0.275)(0.220) (0.230) 

-26.873448915 l/a 29910934 15082 1722 213 a5567 a5 12 

(0.022) (0.022) (0.02) (0.022)(0.063)(0.05) (0.05) 

l/16 549634 1297 127 15 4660 4 0 

(0.043) (0.045) (0.045)(0.06) (0.128)(0.108)(0.111) 

l/32 34234 la3 15 1 576 0 0 

(o.oaa) (o.oaa)(o.oaa)(o.l29) (0.278)(0.2l9) (0.230) 

-8.676081670 l/a 47212345 268957 15323 la46 606785 123 45 

(0.025) (0.025) (0.02) (0.025)(0.065)(0.05) (0.05) 

l/16 2895215 1877 1543 213 31526 21 1 

(0.044) (0.045) (0.045)(0.062)(0.130)(0.110) (0.112) 

l/32 178233 393 113 21 6768 1 0 

(0.090) (0.090) (0.090)(0.130)(0.252)(0.21) (0.215) 

Note. Real time of computation for any negative eigenvalue for the 
seven algorithms in CPUs. Potential (3.2). Bound states problem. 
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In Table I we list the results obtained for seven numerical methods: 

Method I. Numerov’s method 
Method II. Derived by Raptis and Allison [S] 
Method III. Derived by Ixaru and Rizea [6] 
Method IV. Derived by Raptis [7] 
Method V. The algorithm CV, derived by Ixaru and Berceanu [lo] 
Method VI. Derived by Raptis and Cash [ 33 
Method VII. Proposed in this paper. 

The true solutions to the Woods-Saxon bound states problem were obtained 
corrected to nine decimal places using the analytic solution and the numerical 
results obtained for the seven methods were compared to this true solution. Table I 
shows the absolute errors of the eigenenergies in 1O-9 units and also shows the real 
time of computation for different choices of constant stepsize (which are displayed 
in column 2). The empty areas indicate that the corresponding absolute errors are 
larger than 1. 

The performance of the different methods is dependent on the choice of the fitting 
parameter o. For the purpose of obtaining our numerical results it is appropriate 
to choose o in the way suggested by Ixaru and Rizea [6]. That is, we choose: 

for r E [0, 6.51 
for rE (6.5, 151 

For a discussion of the reasons for choosing the values 50 and 6.5 and the extent 
to which the results obtained depend on these values see [6, p. 251. 

(b) The Resonance Problem 

For positive energies one has the so-called resonance problem. This involves 
finding all values of E in the range 1 GE < 1000 for which the phase shift 6(E) 
is equal to 742. We follow the same strategy as in case (a). Since the solution for 
large r is y(r) z A cos(fir) we take as our initial conditions for the backward 
integration [6]: 

y(rd = cos(fi rb) and y(rb - h) = cos[fi (rb -h)]. 

In order to use method (2.2) we need to compute one extra “initial” condition at 
rb - 2h for the backwards integration and this is obtained using the method 
developed in Raptis [7]. Similarly in the forward direction we take y(0) = 0, 
y(h) = h, and we compute a numerical solution at 2h using the method of [7]. 

In Table II we list the results obtained for the same methods as in the case (a). 
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The true solutions to the Woods-Saxon resonance problem were obtained 
corrected to six decimal places using the analytic solution and the numerical results 
obtained for the seven methods were compared to this true solution. Table II shows 
the absolute errors of the eigenenergies in low6 units and also shows the real time 
of computation for different choices of constant stepsize (which are displayed in 
column 2). The empty areas indicate that the corresponding absolute errors are 
larger than 1. The choice of o is the same as in case (a). 

TABLE II 

Absolute Errors, in 10e6 Units, of the Resonances Calculated 

by the Seven Algorithms I, II, III, IV, V, VI, VII 

Method: I II III IV V VI VII 

h 

The resonance Absolute error in 10-6 units 

(Real time of Computation in CPU's) 

53.588872 i/16 228323 4828 all 313 323 11 1 

(0.09) (0.082) (0.070) (0.070) (0.111) (0.102)(0.120) 

l/32 14059 324 61 28 22 5 0 

(0.191) (0.148) (0.152) (0.152) (0.207) (0.200)(0.235) 

l/64 a70 a5 4 1 a 0 0 

(0.371) (0.297) (0.289) (0.301) (0.405) (0.405)(0.474) 

163.215341 l/16 ------ 67950 6298 633 1921 117 5 

(0.078) (0.082) (0.082) (0.109) (0.100)(0.125) 

l/32 476488 4516 461 55 123 12 1 

(0.191) (0.148) (0.152) (0.152) (0.203) (0.199)(0.250) 

l/64 29538 288 32 3 45 2 0 

(0.359) (0.289) (0.300) (0.301) (0.405) (0.408)(0.485) 

341.495874 l/16 ------ 494722 2842 1 i 284 7215 2542 37 

(0.082) (0.078) (0.078) (0.112) (0.098)(0.135) 

l/32 ------ 32166 1628 115 423 a5 2 

(0.152) (0.148) (0.152) (0.207) (0.199)(0.235) 

l/64 435752 2081 112 a a9 5 1 

(0.362) (0.289) (0.289) (0.301) (0.410) (0.405)(0.474) 

989.701916 l/16 ------ 566260 297804 2228 58695 ------ 681 

(0.082) (0.082) (0.082) (0.111) (0.135) 

l/32 ------ 40128 14608 304 3651 2428 55 

(0.152) (0.148) (0.152) (0.210) (0.205)(0.250) 

l/64 ._.___ 3115 a54 21 251 115 7 

(0.289) (0.293) (0.301) (0.411) (0.410)(0.485) 

Note. Real time of computation for any resonance for the seven algo- 
rithms in CPUs. Potential (3.2). 
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In Table III some results obtained with another potential in Eq. (3.1) are shown. 
This potential is 

V(r) = V,(r) + C/r + 1(1+ 1)/r’, (3.3) 

where VW is the Woods-Saxon potential (3.2). For the purpose of our experiments 
we use the same parameters as in [6], i.e., C = 20, I= 2. 

Since V(r) is singular at the origin, we use the special strategy of [6]. We start 
the forward integration from a point E > 0 and the initial values y(c) and y(s + h) 
for the integration scheme are obtained by a perturbative method (see ref. [ 11 I). As 
in [6] we use the value E = i for our numerical experiments. 

TABLE III 

Absolute Errors, in 1O-6 Units, of the Positive Eigenvalues 
Calculated by the Seven Algorithms I, II, III, IV, V, VI, VII 

Method: I II III IV V VI VII 

h 

The eigenvalue Absolute error in 10-6 units 

(Real time of Computation in CPU's) 

61.482588 l/16 253692 24140 3244 1265 3588 275 11 

(0.092) (0.090) (0.090) (0.090) (0.153) (0.100)(0.130) 

l/32 15621 1472 235 108 244 115 5 

(0.194) (0.168) (0.172) (0.160) (0.305) (0.200)(0.290) 

l/64 967 386 14 4 86 72 0 

(0.390) (0.328) (0.332) (0.332) (0.620) (0.398)(0.480) 

173.075711 l/l6 ------ 295434 41986 5200 41332 2925 115 

(0.090) (0.090) (0.090) (0.160) (0.102)(0.120) 

l/32 618815 18816 2974 327 7154 300 35 

(0.194) (0.168) (0.160) (0.160) (0.322) (0.205)(0.280) 

l/64 38361 1200 193 18 856 48 0 

(0.391) (0.332) (0.320) (0.321) (0.673) (0.400)(0.480) 

352.682070 l/l6 ------ ------ 203007 9171 180375 63550 856 

(0.082) (0.082) (0.160) (0.102)(0.135) 

l/32 ------ 123715 12523 885 10575 2125 117 

(0.160) (0.172) (0.172) (0.335) (0.200)(0.280) 

l/64 573357 7707 889 64 1756 125 7 

(0.390) (0.320) (0.328) (0.328) (0.660) (0.405)(0.480) 
1002.768393 1,1,j _...._ _...__ . ..___ 545667 ____.. .____. 80927 

(0.090) (0.130) 

I/32 ___-.. .____. 162311 3377 182550 60700 813 

(0.172) (0.160) (0.210) (0.205)(0.280) 

l/64 ------ 11125 10675 263 82754 2875 17 

(0.320) (0.293) (0.320) (0.411) (0.405)(0.495) 

Note. Real time of computation for any positive eigenvalue for the 
seven algorithms in CPUs. Potential (3.3). 
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For the purpose of obtaining our numerical results it is appropriate to choose o 
in the way suggested by Ixaru and Rizea [6]. That is we choose 

w= V(u,) 

1 

c WI) f I/(&)1/2 for TE [E, a,] 
WI J/2 for rE(a,, a*] 

for r E (u2, u3] 

V(15) for r E (a,, 151, 

where a, is taken so that V(u,) = I/(&)/2, uz is approximately the first node of V(x), 
and u3 = 6.25 is the point where V(x) is approximately half of its minimum negative 
value. 

The asymptotic solution is in our case the Coulomb function G. The values of G 
at rb and rb - h, needed for backward integration, have been obtained by the sub- 
routine RCWFN (see ref. [12]). 

All computations were carried out on the Micro-Vax II of the Department of 
Mathematics of the National Technical University of Athens, using double preci- 
sion arithmetic (16 significant digits accuracy). It can be seen from the results 
presented in Tables I-III that the new formula is considerably more accurate than 
the other numerical methods that we have considered. In particular, the results 
obtained for the method presented in this paper are considerably better than those 
obtained for the exponentially fitted method VI (although we have been unfair to 
VI in that it is a variable step method and we have carried out our comparisons 
using a fixed step) and this bears out the theory developed in [6]. 
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